Artificial General Intelligence

Comments ยท 5 Views

Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or goes beyond human cognitive capabilities throughout a wide variety of cognitive tasks.

Artificial general intelligence (AGI) is a kind of artificial intelligence (AI) that matches or surpasses human cognitive capabilities throughout a large range of cognitive tasks. This contrasts with narrow AI, oke.zone which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly surpasses human cognitive abilities. AGI is thought about one of the meanings of strong AI.


Creating AGI is a primary objective of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and development jobs across 37 nations. [4]

The timeline for accomplishing AGI remains a topic of ongoing argument amongst researchers and yewiki.org experts. As of 2023, some argue that it might be possible in years or years; others preserve it may take a century or longer; a minority think it may never be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the rapid progress towards AGI, suggesting it might be attained quicker than many expect. [7]

There is argument on the exact meaning of AGI and relating to whether modern large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in science fiction and futures research studies. [9] [10]

Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have specified that reducing the danger of human extinction postured by AGI needs to be an international concern. [14] [15] Others discover the advancement of AGI to be too remote to provide such a threat. [16] [17]

Terminology


AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]

Some scholastic sources schedule the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, hb9lc.org weak AI (or narrow AI) is able to resolve one particular problem but lacks basic cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as human beings. [a]

Related ideas consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is a lot more typically smart than human beings, [23] while the notion of transformative AI connects to AI having a big effect on society, for instance, comparable to the farming or industrial transformation. [24]

A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For instance, a qualified AGI is specified as an AI that outshines 50% of proficient adults in a wide variety of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular meanings, fishtanklive.wiki and some researchers disagree with the more popular techniques. [b]

Intelligence qualities


Researchers generally hold that intelligence is needed to do all of the following: [27]

reason, usage strategy, resolve puzzles, and make judgments under uncertainty
represent understanding, consisting of sound judgment knowledge
strategy
learn
- interact in natural language
- if essential, integrate these skills in completion of any offered goal


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider extra characteristics such as imagination (the ability to form novel psychological images and concepts) [28] and autonomy. [29]

Computer-based systems that display a number of these capabilities exist (e.g. see computational imagination, automated thinking, decision assistance system, robot, evolutionary calculation, intelligent agent). There is debate about whether contemporary AI systems have them to an appropriate degree.


Physical traits


Other abilities are thought about desirable in intelligent systems, as they might impact intelligence or aid in its expression. These consist of: [30]

- the ability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. relocation and control objects, change area to check out, etc).


This includes the capability to detect and react to danger. [31]

Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control items, change place to explore, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might already be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, offered it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a specific physical personification and therefore does not demand a capacity for mobility or traditional "eyes and ears". [32]

Tests for human-level AGI


Several tests indicated to confirm human-level AGI have been considered, consisting of: [33] [34]

The idea of the test is that the device has to try and pretend to be a man, by answering questions put to it, and it will only pass if the pretence is fairly persuading. A significant portion of a jury, who ought to not be expert about machines, need to be taken in by the pretence. [37]

AI-complete problems


An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would need to carry out AGI, due to the fact that the option is beyond the abilities of a purpose-specific algorithm. [47]

There are many issues that have been conjectured to require general intelligence to fix in addition to human beings. Examples include computer vision, natural language understanding, and dealing with unforeseen circumstances while solving any real-world issue. [48] Even a specific job like translation requires a device to read and write in both languages, follow the author's argument (factor), comprehend the context (knowledge), and faithfully replicate the author's initial intent (social intelligence). All of these issues need to be fixed concurrently in order to reach human-level maker efficiency.


However, much of these tasks can now be carried out by modern-day big language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of criteria for checking out comprehension and visual thinking. [49]

History


Classical AI


Modern AI research started in the mid-1950s. [50] The first generation of AI researchers were persuaded that artificial general intelligence was possible which it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon wrote in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]

Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they could create by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the job of making HAL 9000 as sensible as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of producing 'synthetic intelligence' will significantly be resolved". [54]

Several classical AI projects, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar task, were directed at AGI.


However, in the early 1970s, it ended up being obvious that scientists had grossly underestimated the difficulty of the project. Funding agencies became doubtful of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a table talk". [58] In action to this and the success of specialist systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who anticipated the impending achievement of AGI had been misinterpreted. By the 1990s, AI scientists had a reputation for making vain guarantees. They ended up being hesitant to make forecasts at all [d] and avoided reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]

Narrow AI research


In the 1990s and early 21st century, mainstream AI accomplished business success and scholastic respectability by focusing on specific sub-problems where AI can produce verifiable results and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology market, and research study in this vein is heavily moneyed in both academia and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a mature phase was anticipated to be reached in more than 10 years. [64]

At the turn of the century, lots of mainstream AI scientists [65] hoped that strong AI could be established by integrating programs that resolve different sub-problems. Hans Moravec wrote in 1988:


I am confident that this bottom-up path to expert system will one day satisfy the traditional top-down path over half way, all set to supply the real-world competence and the commonsense knowledge that has actually been so frustratingly evasive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven joining the 2 efforts. [65]

However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:


The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really just one viable path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even attempt to reach such a level, given that it looks as if getting there would just total up to uprooting our signs from their intrinsic meanings (thereby merely reducing ourselves to the functional equivalent of a programmable computer system). [66]

Modern artificial general intelligence research study


The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to please goals in a wide variety of environments". [68] This kind of AGI, characterized by the ability to increase a mathematical definition of intelligence instead of show human-like behaviour, [69] was likewise called universal artificial intelligence. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a variety of guest lecturers.


Since 2023 [update], a little number of computer system scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more scientists are interested in open-ended learning, [76] [77] which is the idea of enabling AI to continually learn and innovate like human beings do.


Feasibility


As of 2023, the development and possible accomplishment of AGI remains a subject of intense argument within the AI neighborhood. While traditional agreement held that AGI was a distant goal, recent improvements have actually led some researchers and industry figures to claim that early forms of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and basically unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level artificial intelligence is as wide as the gulf in between current area flight and useful faster-than-light spaceflight. [80]

A further obstacle is the lack of clarity in defining what intelligence involves. Does it need awareness? Must it show the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding required? Does intelligence require clearly replicating the brain and its particular faculties? Does it require emotions? [81]

Most AI scientists think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who think human-level AI will be accomplished, however that today level of development is such that a date can not accurately be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four surveys performed in 2012 and 2013 suggested that the mean price quote among specialists for when they would be 50% positive AGI would get here was 2040 to 2050, depending on the survey, with the mean being 2081. Of the specialists, 16.5% responded to with "never ever" when asked the exact same question but with a 90% self-confidence instead. [85] [86] Further present AGI progress considerations can be found above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]

In 2023, Microsoft scientists released a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it might reasonably be viewed as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 exceeds 99% of human beings on the Torrance tests of creativity. [89] [90]

Blaise Agรผera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has currently been accomplished with frontier designs. They wrote that unwillingness to this view originates from 4 primary factors: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]

2023 likewise marked the introduction of big multimodal designs (large language models capable of processing or producing several methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time thinking before they respond". According to Mira Murati, this capability to believe before responding represents a new, extra paradigm. It enhances model outputs by spending more computing power when creating the answer, whereas the design scaling paradigm enhances outputs by increasing the design size, training data and training calculate power. [93] [94]

An OpenAI employee, Vahid Kazemi, claimed in 2024 that the company had actually attained AGI, mentioning, "In my opinion, we have already attained AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than a lot of humans at the majority of jobs." He likewise addressed criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their learning process to the scientific method of observing, assuming, and confirming. These statements have actually triggered debate, as they depend on a broad and unconventional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models show remarkable flexibility, they might not completely meet this requirement. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's tactical intents. [95]

Timescales


Progress in expert system has actually historically gone through periods of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to produce area for further progress. [82] [98] [99] For instance, the hardware offered in the twentieth century was not sufficient to carry out deep learning, which requires great deals of GPU-enabled CPUs. [100]

In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a genuinely versatile AGI is constructed differ from 10 years to over a century. As of 2007 [update], the consensus in the AGI research study neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI researchers have actually given a large range of viewpoints on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a predisposition towards predicting that the onset of AGI would occur within 16-26 years for modern-day and historical forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the standard method utilized a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was related to as the initial ground-breaker of the current deep knowing wave. [105]

In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old kid in very first grade. A grownup comes to about 100 typically. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI established GPT-3, a language model capable of performing numerous varied tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]

In the exact same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for changes to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind established Gato, a "general-purpose" system capable of carrying out more than 600 various jobs. [110]

In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI designs and demonstrated human-level efficiency in tasks spanning numerous domains, such as mathematics, coding, and law. This research sparked a dispute on whether GPT-4 could be thought about an early, incomplete variation of synthetic basic intelligence, stressing the requirement for more exploration and assessment of such systems. [111]

In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]

The idea that this things could really get smarter than individuals - a couple of people believed that, [...] But many individuals believed it was way off. And I thought it was way off. I believed it was 30 to 50 years or even longer away. Obviously, I no longer believe that.


In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has actually been pretty extraordinary", and that he sees no reason it would slow down, expecting AGI within a years or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would be capable of passing any test at least as well as human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI worker, approximated AGI by 2027 to be "noticeably plausible". [115]

Whole brain emulation


While the advancement of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in detail, and then copying and replicating it on a computer system or another computational device. The simulation model need to be sufficiently devoted to the original, so that it acts in practically the exact same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been talked about in expert system research study [103] as an approach to strong AI. Neuroimaging technologies that might deliver the required in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of sufficient quality will appear on a comparable timescale to the computing power required to imitate it.


Early estimates


For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be needed, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 ร— 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon an easy switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at numerous price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a measure used to rate current supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to predict the essential hardware would be offered sometime between 2015 and 2025, if the exponential development in computer system power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed a particularly detailed and openly available atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based methods


The synthetic nerve cell design presumed by Kurzweil and utilized in numerous existing synthetic neural network executions is basic compared to biological nerve cells. A brain simulation would likely need to catch the comprehensive cellular behaviour of biological nerve cells, presently comprehended just in broad summary. The overhead introduced by complete modeling of the biological, chemical, and physical details of neural behaviour (particularly on a molecular scale) would need computational powers a number of orders of magnitude bigger than Kurzweil's quote. In addition, the price quotes do not account for glial cells, which are understood to play a function in cognitive procedures. [125]

A basic criticism of the simulated brain method obtains from embodied cognition theory which asserts that human embodiment is an important element of human intelligence and is needed to ground meaning. [126] [127] If this theory is proper, any fully practical brain design will require to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, however it is unidentified whether this would suffice.


Philosophical viewpoint


"Strong AI" as defined in viewpoint


In 1980, thinker John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a difference between two hypotheses about synthetic intelligence: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (just) act like it believes and has a mind and consciousness.


The very first one he called "strong" due to the fact that it makes a more powerful statement: it presumes something unique has actually happened to the machine that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" machine, but the latter would likewise have subjective mindful experience. This usage is likewise common in academic AI research and textbooks. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that awareness is needed for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system scientists the question is out-of-scope. [130]

Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no need to understand if it actually has mind - certainly, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 different things.


Consciousness


Consciousness can have various meanings, and some elements play considerable functions in sci-fi and the principles of expert system:


Sentience (or "remarkable consciousness"): The ability to "feel" perceptions or emotions subjectively, instead of the ability to factor about understandings. Some theorists, such as David Chalmers, utilize the term "awareness" to refer exclusively to extraordinary consciousness, which is approximately comparable to sentience. [132] Determining why and how subjective experience develops is understood as the tough problem of awareness. [133] Thomas Nagel described in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel uses the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually achieved life, though this claim was extensively disputed by other experts. [135]

Self-awareness: To have mindful awareness of oneself as a separate individual, particularly to be purposely familiar with one's own thoughts. This is opposed to merely being the "topic of one's thought"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the same method it represents whatever else)-but this is not what individuals normally indicate when they utilize the term "self-awareness". [g]

These characteristics have an ethical dimension. AI sentience would trigger concerns of welfare and legal defense, similarly to animals. [136] Other aspects of awareness associated to cognitive capabilities are also appropriate to the principle of AI rights. [137] Figuring out how to integrate sophisticated AI with existing legal and social frameworks is an emerging problem. [138]

Benefits


AGI might have a wide array of applications. If oriented towards such goals, AGI could assist reduce different problems in the world such as cravings, hardship and health issues. [139]

AGI might enhance efficiency and efficiency in most jobs. For instance, in public health, AGI might speed up medical research study, significantly versus cancer. [140] It might look after the elderly, [141] and equalize access to quick, high-quality medical diagnostics. It might offer fun, inexpensive and personalized education. [141] The requirement to work to subsist could become obsolete if the wealth produced is properly rearranged. [141] [142] This also raises the concern of the place of humans in a drastically automated society.


AGI could likewise help to make rational decisions, and to anticipate and avoid disasters. It could also assist to profit of possibly devastating technologies such as nanotechnology or environment engineering, while preventing the associated dangers. [143] If an AGI's main objective is to avoid existential catastrophes such as human extinction (which might be difficult if the Vulnerable World Hypothesis turns out to be real), [144] it might take measures to drastically lower the dangers [143] while decreasing the effect of these procedures on our lifestyle.


Risks


Existential risks


AGI might represent numerous kinds of existential danger, which are risks that threaten "the premature extinction of Earth-originating intelligent life or the long-term and drastic destruction of its capacity for desirable future development". [145] The danger of human extinction from AGI has actually been the subject of numerous disputes, but there is likewise the possibility that the advancement of AGI would result in a completely problematic future. Notably, it might be used to spread out and maintain the set of worths of whoever establishes it. If humankind still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI could help with mass monitoring and indoctrination, which could be utilized to produce a steady repressive around the world totalitarian routine. [147] [148] There is also a danger for the makers themselves. If makers that are sentient or otherwise worthy of ethical factor to consider are mass created in the future, engaging in a civilizational path that forever ignores their welfare and interests might be an existential catastrophe. [149] [150] Considering how much AGI might improve mankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due care", not for "deserting AI". [147]

Risk of loss of control and human termination


The thesis that AI presents an existential risk for people, and that this threat needs more attention, is controversial however has been endorsed in 2023 by many public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed extensive indifference:


So, facing possible futures of enormous advantages and dangers, the professionals are definitely doing everything possible to ensure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll get here in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]

The potential fate of humanity has sometimes been compared to the fate of gorillas threatened by human activities. The comparison mentions that greater intelligence allowed mankind to control gorillas, which are now vulnerable in methods that they might not have actually anticipated. As a result, the gorilla has actually become a threatened species, not out of malice, but merely as a civilian casualties from human activities. [154]

The skeptic Yann LeCun considers that AGIs will have no desire to dominate humanity which we ought to take care not to anthropomorphize them and analyze their intents as we would for humans. He stated that individuals will not be "wise enough to create super-intelligent machines, yet ridiculously dumb to the point of offering it moronic goals without any safeguards". [155] On the other side, the concept of critical convergence recommends that nearly whatever their objectives, intelligent representatives will have factors to try to make it through and obtain more power as intermediary actions to accomplishing these goals. Which this does not need having emotions. [156]

Many scholars who are concerned about existential danger supporter for more research into resolving the "control issue" to answer the concern: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of security precautions in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]

The thesis that AI can pose existential threat likewise has detractors. Skeptics normally state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other issues associated with current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals beyond the innovation market, existing chatbots and LLMs are currently perceived as though they were AGI, leading to additional misconception and fear. [162]

Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some researchers believe that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulative capture and to inflate interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint statement asserting that "Mitigating the threat of termination from AI must be a global top priority alongside other societal-scale risks such as pandemics and nuclear war." [152]

Mass joblessness


Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of workers might see at least 50% of their tasks affected". [166] [167] They think about office workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, but likewise to manage robotized bodies.


According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]

Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend seems to be towards the 2nd choice, with technology driving ever-increasing inequality


Elon Musk thinks about that the automation of society will require governments to adopt a universal fundamental earnings. [168]

See also


Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI result
AI security - Research area on making AI safe and helpful
AI positioning - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroลพa
Expert system
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General video game playing - Ability of expert system to play various video games
Generative expert system - AI system efficient in creating material in response to triggers
Human Brain Project - Scientific research study project
Intelligence amplification - Use of information technology to enhance human intelligence (IA).
Machine ethics - Moral behaviours of man-made machines.
Moravec's paradox.
Multi-task knowing - Solving several machine learning tasks at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to synthetic intelligence.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or type of expert system.
Transfer knowing - Artificial intelligence strategy.
Loebner Prize - Annual AI competition.
Hardware for expert system - Hardware specifically created and enhanced for expert system.
Weak expert system - Form of synthetic intelligence.


Notes


^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese space.
^ AI founder John McCarthy composes: "we can not yet define in general what sort of computational procedures we wish to call intelligent. " [26] (For a conversation of some meanings of intelligence utilized by artificial intelligence researchers, see viewpoint of synthetic intelligence.).
^ The Lighthill report specifically criticized AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became figured out to fund only "mission-oriented direct research, rather than standard undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the rest of the employees in AI if the creators of new general formalisms would reveal their hopes in a more protected kind than has often been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a basic AI book: "The assertion that devices might perhaps act smartly (or, perhaps much better, akropolistravel.com act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are actually believing (instead of simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that synthetic basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020.
^ a b c "AI timelines: What do specialists in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton stops Google and warns of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad actors from utilizing it for bad things.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The real hazard is not AI itself but the way we deploy it.
^ "Impressed by expert system? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential dangers to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that mankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of extinction from AI need to be a global priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of threat of termination from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from creating machines that can outthink us in general ways.
^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential risk.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete variety of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart characteristics is based on the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists challenge whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers avoided the term expert system for fear of being viewed as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2009/2010 - ะฟั€ะพะปะตั‚ะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2009/2010 - spring trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "ะ˜ะทะฑะธั€ะฐะตะผะธ ะดะธัั†ะธะฟะปะธะฝะธ 2010/2011 - ะทะธะผะตะฝ ั‚ั€ะธะผะตัั‚ัŠั€" [Elective courses 2010/2011 - winter trimester] ะคะฐะบัƒะปั‚ะตั‚ ะฟะพ ะผะฐั‚ะตะผะฐั‚ะธะบะฐ ะธ ะธะฝั„ะพั€ะผะฐั‚ะธะบะฐ [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in maker intelligence, synthetic general intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sรฉbastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us paradise or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Mรผller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A study of skilled viewpoint. In Fundamental problems of synthetic intelligence (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva ลฝรกฤkovรก, Michal Polรกk and Radek Schuster, 52-75. Plzeลˆ: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agรผera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, wiki.project1999.com Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Char

Comments